

History of Ig Therapy

Richard L. Wasserman, MD, PhD

Medical Director of Pediatric Allergy and Immunology Medical City Children's Hospital Dallas, TX

Salman Bhai, MD

Assistant Professor of Neurology, UT Southwestern Dallas Director, Neuromuscular Center, Institute for Exercise and Environmental Medicine

Suraj Ashok Muley, MD, FAAN, FACP

Director of Neurology, Bob Bove Neuroscience Institute at HonorHealth Professor of Neurology, University of Arizona

GRIFOLS

Passive Immunization

Evolution of Gammaglobulin Route of Administration

First IVIG Preparations

Research in the late 1970's led to an acceptable IVIG preparation

- Trace amounts of proteases to dissociate aggregates
- Chromatographic purification of the IgG
- Stabilize the IgG by: trace pepsin, addition of sugars or amino acids (glycine), or albumin
- Commercial preparations approved by the FDA in 1981
 - Gamimmune pH 4 plus glycine and maltose (Cutter)
 - Sandoglobulin transient low pH, trace pepsin, stabilized with sucrose (Sandoz)

Composition of Currently Available IVIG Products

Donor pool

- Derived from 1,000-10,000 donors
 - May be as many as 60,000 donors (limit placed by FDA in 2000)
- Source versus recovered plasma

Composition

- Monomeric IgG (>95%) with small amounts of dimeric and polymeric IgG
- Small amounts of IgM and IgA present; varies with product

Antibody content

- One gram of IVIG contains 4x10¹⁸ molecules of antibody
- >10⁷ specificities to a broad range of bacterial and viral pathogens

Amino Acid Stabilized	Other Stabilizers
Asceniv – glycine	Flebogamma – sorbitol
Gamunex-C – glycine	Octagam – maltose
Gammagard Liquid – glycine	Gammaplex – D-sorbitol
Privigen – proline	Gammagard SD – glucose + sodium

Common Adverse Reactions to IVIG

- Early IVIG products had 10-15% severe adverse reactions
- Reactions often related to the speed of the infusion and/or minor contaminants in the IVIG
 - Fever; chills; facial flush
 - Tachycardia; palpitations; chest tightness or chest pain
 - Anxiety; nausea; abdominal pain
 - Dyspnea; back pain; arthralgia; myalgia
 - Hypotension; shock
- May occur 6–24 hours after the completion of the infusion
- Side effects of more recent products are milder (10–15%) and occur less frequently (<1%)
- Occur most commonly in newly diagnosed hypogammaglobulinemia patients, or in patients with chronic infection, e.g. bronchitis

"Mild" Adverse Events

Mechanisms

- Activation of complement by IgG aggregates
- Antigen-antibody complexes
 - Heavy antigenic (bacteria) loads, e.g. CVID
- Vasoactive proteins in IVIG as "contaminants"
 - Prekallikrein activator and kallikrein
 - Factor XIa
- Risk factors¹
 - IgG peak
 - Dose
 - Infusion rate

IVIG Product Class Warnings and Serious Adverse Reactions¹⁻³

Clinical Neurological

Society of America

GRIFOLS

Anaphylactic Reaction – Contraindication	 IgA-deficient patients with IgE antibodies to IgA and a history of hypersensitivity 	
Thromboembolic Events – Boxed warning	 May be due to increased viscosity/osmolality One or more underlying risk factors identified Factor XIa pro-coagulant activity 	
Renal Failure – Boxed Warning	 Probably due to osmotic injury in susceptible patients with one or more underlying risk factors Highly associated with sucrose containing products 	
Aseptic meningitis – Warning	 Migraine is risk factor Observed with high dose, fast rate 	
Hemolysis – Warning	 Positive Coombs test (products contain isohemagglutinins) One or more underlying risk factors 	

1. Nydegger UE et al. *Drug Saf.* 1999;31(3):171-185. **2.** Pierce LR, et al. *Transfus Med Rev.* 2003;17:241-251. **3.** Ballow M. *Am J Health Pharm.* 2005;62(16 Suppl 3):s12-8

Minimizing the Risks of IgG Side Effects

Severe, life-threatening side effects

- Age avoid other risk factors in older patients
- Diabetes or kidney disease no CHO containing products
- Thrombosis history limit dose per infusion, limit infusion rate
- Cardiac disease avoid sodium containing products

General risk factors

- Decrease the dose per infusion
- Decrease infusion rate
- SCIG risks appear to be lower than IVIG, but not zero
- FSCIG risks appear to be lower than IVIG, but not zero

History of IVIG Viral Safety

Clinical

Neurological Society of America

- Four clusters of non-A, non-B hepatitis patients who reported receiving IVIG products
- Specific manufacturing procedures implicated in contaminated lots
- Changed manufacturing process to include a solventdetergent treatment designed to inactivate lipid enveloped contaminating viruses
- No reported cases of transmission of HIV by a licensed product – partitioned out by the ethanol precipitation procedure

GRIFOLS

Approaches to IVIG Pathogen Safety

Society of America

Concerns About Transmissible Spongioform Encephalopathies (TSE) – Prion Disease

- Creutzfeldt-Jakob Disease (sporadic):
 - No evidence transmitted by blood products
- New variant CJD
 - Emerging pathogen in UK and Europe, 1996 2000
 - Mad cow disease
- Quarantine of IVIG product caused shortage in 2000
- Changed GMP to add depth filtration and nanofiltration in purification steps of Ig products

Thromboembolic Events (TEE)

Risk Factors for Thromboembolism

Infusion factors

- Large dose, e.g. treat autoimmune disorders (neurology)
- Rapid infusion
- No pre-infusion or post-infusion hydration
- First infusion

Patient factors

- Hypercoagulable state
- Indwelling catheters
- Cerebrovascular or cardiovascular disease
- Diabetes
- High lipids/cholesterol
- Hypertension
- Prior history of thrombosis
- Estrogen use
- Smoking

Evolution of IgG administration

US FDA-Approved Indications for IVIG

IVIG is recommended for a limited number of FDA-approved indications

- Chronic inflammatory polyneuropathy (CIDP)
- Multifocal motor neuropathy
- Dermatomyositis
- Primary immunodeficiency disease
- Idiopathic thrombocytopenic purpura
- Kawasaki disease
- B-cell chronic lymphocytic leukemia for recurrent bacterial infections
- Pediatric HIV for recurrent bacterial infections
- Bone marrow transplantation
 - Acute graft-versus-host disease
 - Interstitial CMV pneumonia
 - Infections

Note that not all products are approved for all indications

When Do Product Characteristics Make a Difference?

- Pre-existing kidney disease, diabetes
 or hypertension
 - Avoid carbohydrate containing products.
- Heart disease
 - Prefer low/no sodium
 - Isosmolal
 - Higher concentration/lower infusion volume

- At risk for hyperviscosity MGUS, myeloma
 - Prefer low/no sodium
 - Isosmolal
 - Lower concentration
- IgE anti-IgA antibodies
 - Undetectable/low IgA content

	Intravenous Immunoglobulin (IVIG)	Subcutaneous Immunoglobulin (SCIG)	Hyaluronidase Facilitated Immunoglobulin (fSCIG)
Indications	Adult and pediatric PI, ITP, KD, CLL, DM, CIDP, MMN	Adult and pediatric PI, CIDP	Adult and pediatric PI patients
Administration	Healthcare professional administered	Self-administered	Either self-administered or a healthcare professional administered
Frequency	Usually given every 3-4 weeks	Daily to every 2 weeks	Usually given every 3-4 weeks
Infusion time	Typically 2-6 hours to infuse	Can take 5 minutes to 2 hours to infuse or inject	Usually 1-2 hours to infuse
Location of care	Can be infused at home , in a hospital or an outpatient infusion center depending on insurance and patient preference	Usually administered in a home setting after the patient is trained to be independent	Can be infused at home or in an outpatient infusion center depending on insurance and patient preference
Side effects	5-15% of patients experience systemic AEs ; most commonly headache, myalgia, malaise. Side effects may be delayed. AEs can be mitigated by pre-hydration, reduced infusion rate and pre-medications	Systemic AEs in 1-3% of patients . Local AEs; erythema, pruritis, pain, induration occur at least once in most patients but lessen or resolve over time.	Systemic AEs in 7% of patients . Local AEs; erythema, pruritis, pain, induration occur at least once in most patients but lessen or resolve over time. Because of the large infusion volume, edema resolves over 24-72 hours.

IVIG as an Immunomodulator: High Dose IVIG in Children with ITP

THE LANCET, JUNE 6, 1981

HIGH-DOSE INTRAVENOUS GAMMAGLOBULIN FOR IDIOPATHIC THROMBOCYTOPENIC PURPURA IN CHILDHOOD

P. IMBACH	S. BARANDUN	
V. d'Apuzzo	C. BAUMGARTNER	
A. HIRT	A. MORELL	
E. Rossi	M. SCHÖNI	
M. VEST	H. P. WAGNER	

70% of IG Used "Off-label"

IgG Usage by Select Disease State (%)

Rossi's Principles of Transfusion Medicine, Sixth Edition. Edited by Toby L. Simon, Eric A. Gehrie, Jeffrey McCullough, John D. Roback, and Edward L. Snyder.© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

Companion website: www.wiley.com/go/simon/Rossi6. Melvin Berger, Departments of Pediatrics and Pathology, Case Western Reserve University, Cleveland, OH, USA. CHAPTER 23, Immunoglobulin products. 20

Recognized* Neurological Uses of IVIG

Guillain Barre Syndrome

Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)

Multifocal Motor Neuropathy

Dermatomyositis

Myasthenia Gravis

*Recognized does not infer FDA approval

IVIG Works in Multiple Ways to Disrupt the Inflammatory Process of Autoimmune Presentations

Clinical

Neurological

Society of America

^aThe precise mechanism of action of IVIG in treatment of CIDP has not been fully elucidated. **1.** Dalakas MC. *Nat Rev Neurol.* 2011;7(9):507-517. **2.** Durandy A. *Clin Exp Immunol.* 2009;158(suppl 1):2-13. **3.** Ritter C. *J Neuroinflammation.* 2015;12:148.

Guillain Barre Syndrome

immune-mediated diseases.¹¹⁻¹⁴ The biologic effects of high-dose immune globulin in these conditions have not been fully elucidated, but it is clear that the drug may influence the immune system in many ways.¹³⁻¹⁹ It is not possible to predict the mechanism that might be beneficial in Guillain–Barré syndrome, since the

From the Department of Neurology, Academic Hospital Rotterdam (F.G.A.M.), and the Department of Trials and Statistics, Daniel den Hoed Can-

sent unless paresis precluded their doing so, in which case oral consent was obtained.

Eligibility and Randomization

Patients were eligible if they fulfilled the criteria for acute Guillain-Barré syndrome,²³ were not able to walk 10 m independently, and could enter the study within two weeks of onset of the neuropathy. The criteria for exclusion were age of less than four years, a previous episode of Guillain-Barré syndrome, a previous severe allergic reaction to properly matched blood products, known selec-

ICE Study: Significant Improvement in CIDP at 24 Weeks (Disability Scores, INCAT^a)

Neurological

Society of America

treatment period without crossing over and maintained ≥1 point improvement through week 24.

INCAT, inflammatory neuropathy cause and treatment.

1. Hughes RAC. Lancet Neurol. 2008;7(2):136-144. 2. Data on file, Grifols.

IVIG in MMN

16 patients randomized to IVIg 0.4 g/kg/day for 5 days or placebo

Improvement assessed at 28 days

Figure 2. Comparison of neurologic disability scale (NDS) and grip strength between the start and end of the treatment arm. IVIg significantly reduced the NDS and increased grip strength over the course of the treatment arm (n = 14 for NDS, n = 15 for grip strength).

IVIG in Dermatomyositis

95 pts with active DM randomized to 2 g/kg IVIg q 4 wks for 16 wks

Primary endpoint:

Total improvement score (TIS) of at least 20 with no worsening during 16 wks

TIS included:

Manual muscle test Physician global assessment of disease activity Patient global assessment of disease activity Health assessment questionnaire Extra muscular disease activity Serum muscle enzyme levels

Figure 2. Total Improvement Score (TIS) at Week 16 and Week 40.

Shown is the mean TIS up to the end of the double-blind, randomized, placebo-controlled phase at week 16 and up to the end of the open-label extension phase at week 40. The TIS is a weighted composite score reflecting the change over time in a core set of six measures of myositis activity; scores range from 0 to 100, with higher scores indicating greater improvement (see the Supplementary Appendix). Conclusions cannot be drawn from the results from week 16 to week 40 (the open-label extension phase), because these results are descriptive only. I bars represent 95% confidence intervals.

IVIG in Myasthenia Gravis

IVIG for 36 weeks

Primary Endpoint:

>50% reduction in corticosteroid dose at week 39

Patients were stratified according to whether entry CS dose was at or below the median (n = 20 IGIV-C; n = 15 placebo) or above the median baseline dose (20 mg prednisone equivalent) (n = 10 IGIV-C; n = 15 Placebo). There were no significant differences between the treatment groups overall. Subgroups illustrate that numerically in both arms, a higher percentage achieved primary end point if entering in the higher CS dose quantile. IGIV-C = immune globulin (human), 10% caprylate/chromatography purified; IVIG = IV immunoglobulin.

Clinical Neurological Society of America Mosby

VOLUME 127 No. 2 FEBRUARY 2011 www.jacionline.org

THE JOURNAL OF Allergy AND Clinical Immunology

Innate Immunity

DC-mediated T-cell active mmatory cytokine proche natory cytokine productional costimulatory moleculous ocytes? *CENR3 and CENRS Expression of CD1427

NIK residentiation ACICS, 7 spression of activating further

AMERICAN ACADEMY OF ALLERGY ASTHMA & IMMUNOLOGY

dl trafficking of too tissuame Pelation 1

Adaptive Immunity

1 cell activation and proliferation a. 3 production 4 T-call apoptosisT E-call differentiation 4

et Proposed

Nature's Most Potent Immune Modulator

Anastry, ancestry-informative marken, and the guest for personalized mediane TGF-#1: Mediator of a feedback loop in

> ROSTRUM Ty2 heterogeneity: Does function follow form?

OF SUMMARY Diagnosis and Rationals for Action against Cow's Milk Alergy (DRACMA): A summary report

EXPERT PANEL REPORT Guidelines for the Disgnosis and Management of Food Allengy in the United Status: Summary of the NAID-Sponsoral Expert Pan al Report

